Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available November 1, 2026
-
Concurrently implemented green initiatives to combat global environmental crises may be curtailed or even sacrificed given the ongoing global economic contraction. We collected empirical data and information about green initiatives from 15 sites or countries worldwide. We systematically explored how specific policy, intended behaviors, and gains of given green initiative may interact with those of other green initiatives concurrently implemented in the same geographic area or involving the same recipients. Surprisingly, we found that spillover effects were very divergent: one initiative could reduce the gain of another by 22 % ~ 100 %, representing alarming losses, while in other instances, substantial co-benefits could arise as one initiative can increase the gain of another by 9 % ~ 310 %. Leveraging these effects will help countries keep green initiatives with significant co-benefits but stop initiatives with substantial spillover losses in the face of widespread budget cuts, better meeting the United Nations’ sustainable development goals.more » « less
-
Imaging spectroscopy is a burgeoning tool for understanding ecosystem functioning on large spatial scales, yet the application of this technology to assess intra-specific trait variation across environmental gradients has been poorly tested. Selection of specific genotypes via environmental filtering plays an important role in driving trait variation and thus functional diversity across space and time, but the relative contributions of intra-specific trait variation and species turnover are still unclear. To address this issue, we quantified the variation in reflectance spectra within and between six uniform stands of Metrosideros polymorpha across elevation and soil substrate age gradients on Hawai‘i Island. Airborne imaging spectroscopy and light detection and ranging (LiDAR) data were merged to capture and isolate sunlit portions of canopies at the six M. polymorpha-dominated sites. Both intra-site and inter-site spectral variations were quantified using several analyses. A support vector machine (SVM) model revealed that each site was spectrally distinct, while Euclidean distances between site centroids in principal components (PC) space indicated that elevation and soil substrate age drive the separation of canopy spectra between sites. Coefficients of variation among spectra, as well as the intrinsic spectral dimensionality of the data, demonstrated the hierarchical effect of soil substrate age, followed by elevation, in determining intra-site variation. Assessments based on leaf trait data estimated from canopy reflectance resulted in similar patterns of separation among sites in the PC space and distinction among sites in the SVM model. Using a highly polymorphic species, we demonstrated that canopy reflectance follows known ecological principles of community turnover and thus how spectral remote sensing addresses forest community assembly on large spatial scales.more » « less
-
null (Ed.)Payments for Ecosystem Services (PES) programs have been implemented in both developing and developed countries to conserve ecosystems and the vital services they provide. These programs also often seek to maintain or improve the economic wellbeing of the populations living in the corresponding (usually rural) areas. Previous studies suggest that PES policy design, presence or absence of concurrent PES programs, and a variety of socioeconomic and demographic factors can influence decisions of households to participate or not in the PES program. However, neighborhood impacts on household participation in PES have rarely been addressed. This study explores potential neighborhood effects on villagers’ enrollment in the Grain-to-Green Program (GTGP), one of the largest PES programs in the world, using data from China’s Fanjingshan National Nature Reserve. We utilize a fixed effects logistic regression model in combination with the eigenvector spatial filtering (ESF) method to explore whether neighborhood size affects household enrollment in GTGP. By comparing the results with and without ESF, we find that the ESF method can help account for spatial autocorrelation properly and reveal neighborhood impacts that are otherwise hidden, including the effects of area of forest enrolled in a concurrent PES program, gender and household size. The method can thus uncover mechanisms previously undetected due to not taking into account neighborhood impacts and thus provides an additional way to account for neighborhood impacts in PES programs and other studies.more » « less
-
Although research on wildlife species across taxa has shown that males and females may differentially select habitat, sex-specific habitat suitability models for endangered species are uncommon. We developed sex-specific models for Bengal tigers (Panthera tigris) based on camera trapping data collected from 20 January to 22 March 2010 within Chitwan National Park, Nepal, and its buffer zone. We compared these to a sex-indiscriminate habitat suitability model to assess the benefits of a sex-specific approach to habitat suitability modeling. Our sex-specific models produced more informative and detailed habitat suitability maps and highlighted vital differences in the spatial distribution of suitable habitats for males and females, specific associations with different vegetation types, and habitat use near human settlements. Improving and refining habitat models for this and other critically endangered species provides the necessary information to meet established conservation goals and population recovery targets.more » « less
-
null (Ed.)Community forests have been established worldwide to sustainably manage forest ecosystem services while maintaining the livelihoods of local residents. The Chitwan National Park in Nepal is a world-renowned biodiversity hotspot, where community forests were consolidated in the park’s buffer zone after 1993. These western Chitwan community forests stand as the frontiers of human–environment interactions, nurturing endangered large mammal species while providing significant natural resources for local residents. Nevertheless, no systematic forest cover assessment has been conducted for these forests since their establishment. In this study, we examined the green vegetation dynamics of these community forests for the years 1988–2018 using Landsat surface reflectance products. Combining an automatic water extraction index, spectral mixture analysis and the normalized difference fraction index (NDFI), we developed water masks and quantified the water-adjusted green vegetation fractions and NDFI values in the forests. Results showed that all forests have been continuously greening up since their establishment, and the average green vegetation cover of all forests increased from approximately 30% in 1988 to above 70% in 2018. With possible contributions from the invasion of exotic understory plant species, we credit community forestry programs for some of the green-up signals. Monitoring of forest vegetation dynamics is critical for evaluating the effectiveness of community forestry as well as developing sustainable forest management policies. Our research will provide positive feedbacks to local community forest committees and users.more » « less
An official website of the United States government

Full Text Available